Data Communications and Networking

Chapter 3

Data and Signals

Note

To be transmitted, data must be transformed to electromagnetic signals.

3-1 ANALOG AND DIGITAL

Data can be analog or digital. The term analog data refers to information that is continuous; digital data refers to information that has discrete states. Analog data take on continuous values. Digital data take on discrete values.

Topics discussed in this section:

- Analog and Digital Data
- Analog and Digital Signals
- Periodic and Nonperiodic Signals

Analog and Digital Data

- Data can be analog or digital.
- Analog data are continuous and take continuous values.
- Digital data have discrete states and take discrete values.

Analog and Digital Signals

- Signals can be analog or digital.
- Analog signals can have an infinite number of values in a range.
- Digital signals can have only a limited number of values.

Figure 3.1 Comparison of analog and digital signals

a. Analog signal

b. Digital signal
-The simplest way to show signals is by plotting them on a pair of perpendicular axes.
-The vertical axis represents the value or strength of a signal.
-The horizontal axis represents time.
-The curve representing the analog signal passes through an infinite number of points.
-The vertical lines of the digital signal, however, demonstrate the sudden jump that the signal makes from value to value.

Periodic and Nonperiodic Signals

-Both analog and digital signals can take one of two forms: periodic or nonperiodic (sometimes refer to as aperiodic, because the prefix a in Greek means "non").

- A periodic signal completes a pattern within a measurable time frame, called a period, and repeats that pattern over subsequent identical periods.
-The completion of one full pattern is called a cycle.
- A nonperiodic signal changes without exhibiting a pattern or cycle that repeats over time.
-Both analog and digital signals can be periodic or nonperiodic.
-In data communications, we commonly use periodic analog signals (because they need less bandwidth) and nonperiodic digital signals (because they can represent variation in data).

3-2 PERIODIC ANALOG SIGNALS

In data communications, we commonly use periodic analog signals and nonperiodic digital signals.

Periodic analog signals can be classified as simple or composite.

A simple periodic analog signal, a sine wave, cannot be decomposed into simpler signals.

A composite periodic analog signal is composed of multiple sine waves.

Figure 3.2 A sine wave

Sine Wave

- The sine wave is the most fundamental form of a periodic analog signal.
- It is a simple oscillating curve, its change over the course of a cycle is smooth and consistent, a continuous, rolling flow.
-Each cycle consists of a single arc above the time axis followed by a single arc below it.
- A sine wave can be represented by three parameters: the peak amplitude, the frequency, and the phase.

Peak Amplitude

- The peak amplitude of a signal is the absolute value of its highest intensity, proportional to the energy it carries.
-For electric signals, peak amplitude is normally measured in volts.

Period and Frequency

-Period refers to the amount of time, in seconds, a signal needs to complete 1 cycle.

- Frequency refers to the number of periods in 1 s .
-Note that period and frequency are just one characteristic defined in two ways.
-Period is the inverse of frequency, and frequency is the inverse of period, as the following formulas show.

$$
f=\frac{1}{T} \quad \text { and } \quad T=\frac{1}{f}
$$

Note

Frequency and period are the inverse of each other.

$$
f=\frac{1}{T} \quad \text { and } \quad T=\frac{1}{f}
$$

Figure 3.3 Two signals with the same phase and frequency, but different amplitudes

a. A signal with high peak amplitude
Peak amplitude
b. A signal with low peak amplitude

Figure 3.4 Two signals with the same amplitude and phase, but different frequencies

```
Amplitude
```



```
Period: \(\frac{1}{12} \mathrm{~s}\)
```

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Frequency

- Frequency is the rate of change with respect to time.
- Change in a short span of time means high frequency.
- Change over a long span of time means low frequency.

Note

If a signal does not change at all, its frequency is zero.
If a signal changes instantaneously, its frequency is infinite.

Note

Phase describes the position of the waveform relative to time 0 .

Phase

-The term phase describes the position of the waveform relative to time 0 .
-If we think of the wave as something that can be shifted backward or forward along the time axis, phase describes the amount of that shift.
-It indicates the status of the first cycle.
-Phase is measured in degrees or radians

Figure 3.5 Three sine waves with the same amplitude and frequency, but different phases

a. 0 degrees

b. 90 degrees

c. 180 degrees

1. A sine wave with a phase of 0° starts at time 0 with a zero amplitude. The amplitude is increasing.
2. A sine wave with a phase of 90° starts at time 0 with a peak amplitude. The amplitude is decreasing.
3. A sine wave with a phase of 180° starts at time 0 with a zero amplitude. The amplitude is decreasing.

DIGITAL SIGNALS

- In addition to being represented by an analog signal, information can also be represented by a digital signal.
- For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage.
- A digital signal can have more than two levels. In this case, we can send more than 1 bit for each level.

Figure 3.16 Two digital signals: one with two signal levels and the other with four signal levels

a. A digital signal with two levels

b. A digital signal with four levels

Bit Rate

- Most digital signals are nonperiodic, and thus period and frequency are not appropriate characteristics.
- Another term-bit rate (instead of frequency)-is used to describe digital signals.
-The bit rate is the number of bits sent in 1 s , expressed in bits per second (bps).

